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Abstract—Sound event localization and detection (SELD) has
seen substantial advancements through learning-based meth-
ods. These systems, typically trained from scratch on specific
datasets, have shown considerable generalization capabilities.
Recently, deep neural networks trained on large-scale datasets
have achieved remarkable success in the sound event classification
(SEC) field, prompting an open question of whether these
advances can be extended to the development of SELD foundation
models. In this paper, leveraging the power of pre-trained SEC
models, we propose pre-trained SELD networks (PSELDNets) on
a large-scale synthetic dataset. The synthetic dataset, generated
by convolving sound events with simulated spatial room impulse
responses (SRIRs), contains 1,167 hours of audio clips with an
ontology of 170 sound classes. These PSELDNets are applied to
various SELD scenarios. When we adapt PSELDNets to specific
scenarios, particularly in cases of low-resource data, we introduce
a data-efficient fine-tuning method, AdapterBit. PSELDNets are
evaluated on synthetic-test-set using collected SRIRs from the
TAU Spatial Room Impulse Response Database (TAU-SRIR
DB) and achieve satisfactory performance. We also carried out
experiments to validate the transferability of PSELDNets to three
publicly available datasets and our own real-world recordings.
The results demonstrate that PSELDNets surpass state-of-the-
art systems across all publicly available datasets. Given the
need for direction-of-arrival estimation, SELD generally relies
on sufficient multi-channel audio clips. However, incorporating
the AdapterBit, PSELDNets show more efficient adaptability
to various scenarios using minimal multi-channel or even just
monophonic audio clips, outperforming traditional fine-tuning
approaches.

Index Terms—Sound event localization and detection (SELD),
pre-trained SELD networks, data-efficient fine-tuning.

I. INTRODUCTION

Sound event localization and detection (SELD) combines
sound event detection (SED) with direction-of-arrival (DOA)
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estimation, with the goal of recognizing the categories, onsets,
offsets, and DOAs of various sound sources. SELD frame-
works represent audio sources in both spatial and temporal
domains, making them suitable for applications such as robot
listening, audio surveillance, and smart home environments.

A. Existing learning-based SELD methods

In recent years, there have been notable advancements in
learning-based SELD methods. Adavanne et al. [1] introduced
SELDnet, an end-to-end network designed for simultaneous
sound event detection and DOA estimation. Nevertheless,
SELDnet faces challenges in identifying overlapping sound
events of the same class from different locations. To ad-
dress this homogenous overlap issue, the Event-Independent
Network V2 (EINV2) is proposed [2]–[4]. EINV2 uses a
track-wise output format and permutation invariant training
to predict a single sound event and its corresponding DOA
for each track. Unlike SELDnet and EINV2, the Activity-
coupled Cartesian DOA (ACCDOA) combines SED and DOA
tasks into a single output and embeds activity information
into Cartesian DOA vectors [5]. The Multi-ACCDOA (mAC-
CDOA) [6] extends ACCDOA by incorporating a track-wise
output format and employing auxiliary duplicated permutation
invariant training to address the homogenous overlap problem.

On the other hand, numerous learning-based SELD in-
vestigations [2]–[11] have predominantly utilized synthetic
datasets from SELD challenge events [12]–[17], showing
promising performance in both simulated and real spatial
environments. However, these systems have two limitations.
Firstly, the target sound event classes that the systems predict
must be pre-specified before training, posing a challenge since
each application scenario may require different target classes.
Secondly, learning-based SELD approaches can suffer from
performance degradation when exposed to acoustic environ-
ments not encountered during training, i.e., a phenomenon
known as environment shift [18].

One of the effective ways to address the problems of
unknown sound event classes and unseen acoustic environ-
ments is by acquiring significant scenario-specific data for
training. However, creating spatial sound event signals is a
complex task involving extensive data collection and com-
putational generation. This process requires convolving dry
sound source signals with measured spatial room impulse
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responses (SRIRs). Moreover, manually collecting and an-
notating real-world spatial sound event recordings is very
costly, and publicly accessible real-scene SELD data is limited
[19], [20]. To mitigate these challenges, the zero-and-few-
shot SELD system [21] and environment-adaptive Meta-SELD
[18], [22] utilize pre-trained models to operate effectively
with limited data. Despite these developments, there is still
a notable lack of foundation models for SELD. In contrast,
several foundation models have recently been developed [23]–
[26] for sound event classification (SEC), which focus on
identifying the categories of sound events without concerning
their timestamps (i.e., onset and offset). These SEC models
are highly relevant to SELD tasks, but their potential benefits
for the SELD systems are not adequately investigated.

B. Foundation models in SEC

Deep neural networks have made substantial strides in
SEC research [23]–[26]. A key milestone was the introduc-
tion of AudioSet [27], which is a comprehensive dataset
featuring over 2 million human-annotated 10-second audio
clips and an ontology of 527 sound classes, and utilized
for general-purpose sound event recognition. Convolutional
neural networks (CNNs), exemplified by Pre-trained Audio
Neural Networks (PANNs) [23], extract local features from
audio spectrograms and enhance performance by optimizing
the network’s depth and breadth.

Recently, Transformer architectures [28], which have proven
effective in sequence modeling, have been adapted to computer
vision by partitioning images into smaller patches [29], [30].
Inspired by these approaches, several studies, such as the
Audio Spectrogram Transformer (AST) [24], the Patchout
faSt Spectrogram Transformer (PaSST) [25], and the Hier-
archical Token-Semantic Audio Transformer (HTS-AT) [26],
apply purely attention-based models to audio spectrograms to
capture long-range global context. AST [24] leverages the self-
attention mechanism, overlapping patches from audio spectro-
grams, and pre-trained parameters from computer vision to
build the first convolution-free model for SEC. Drawing inspi-
ration from SpecAugment [31] and the mask technique used
in Bidirectional Encoder Representations from Transformers
(BERT) [32], PaSST [25] offers an efficient implementation
of AST by omitting segments of the Transformer’s input
sequence during training. This method encourages the Trans-
former to classify the events using an incomplete sequence.
In comparison, HTS-AT [26] uses Swin Transformer blocks
with shifted window attention [30], enhancing efficiency by
limiting self-attention calculations to local non-overlapping
windows while allowing cross-window connections. These
models achieve state-of-the-art (SOTA) SEC results on Au-
dioSet.

Furthermore, these models, which were pre-trained on large-
scale datasets, offer the potential for transferability to other
audio-related tasks to further improve performance [23]–[26],
such as acoustic scene classification, music genre classifi-
cation, and speech emotion classification. Nevertheless, the
efficient transfer of these pre-trained models to various audio
tasks remains challenging. One common method for adapting

the pre-trained models to these tasks involves fine-tuning all
the parameters of the pre-trained models using the datasets
designed for these tasks. However, this technique requires
significant computational resources and memory capacity. On
the other hand, it can result in a loss of model generalization,
possibly due to catastrophic interference among tasks [33].

C. Parameter-efficient fine-tuning
To mitigate the challenges associated with efficient trans-

fer, the parameter-efficient fine-tuning (PEFT) methodology,
which only fine-tunes a small number of (extra) parameters to
achieve strong performance, has been extensively investigated
across the domains of natural language processing [34]–[37]
and computer vision [33], [38]–[40].

Prominent PEFT methods include Low-Rank Adaptation
(LoRA) [34], Adapter tuning [33], [37], [38], prompt tuning
[40], and others. The fundamental principle of these PEFT
methodologies involves freezing the primary or all pre-trained
parameters and introducing additional trainable parameters for
fine-tuning. Expanding on these PEFT techniques, various
researchers working on audio processing have integrated some
model-specific Adapters into their frameworks [41]–[44]. The
Adapter, a straightforward plug-and-play module, is designed
for attention-based networks and entails incorporating a few
lightweight bottleneck networks into the Transformer layers.
These methodologies retain the generality of the pre-trained
model, conserve computational resources, reduce data require-
ments, and attain competitive or even superior performance.

D. Our contributions
In this study, we endeavor to develop SELD foundation

models that can be applied to various real-world scenarios.
We introduce pre-trained SELD networks (PSELDNets) on a
large-scale synthetic dataset. This dataset, comprising approx-
imately 1,167 hours of audio clips and featuring an ontology
of 170 sound classes, is scenario-agnostic and generated by
convolving sound event clips from FSD50K [45] with sim-
ulated SRIRs. The PSELDNets, inheriting the architectures
of our previously proposed CNN-Conformer [4], [9] and pre-
trained models that achieve SOTA results in SEC, such as
PANNs [23], PaSST [25] and HTS-AT [26], extract spatial
and global features from multi-channel spectrograms. Unlike
common model architectures tailored for the SELD problem,
e.g., CRNN [8] and CNN-attention [4], [10], to our knowledge,
PSELDNets represent the first SELD model that exploits the
Transformer model. We evaluate the performance of PSELD-
Nets on synthetic-test-set that uses measured SRIRs from TAU
Spatial Room Impulse Response Database (TAU-SRIR DB)
[46] and obtain satisfactory performance.

We transfer PSELDNets to multiple publicly available
datasets, including the Detection and Classification of Acoustic
Scenes and Events (DCASE) 2021 Challenge Task 3 [14],
the L3DAS22 Challenge Task 2 [16], the Sony-TAu Realistic
Spatial Soundscapes 2023 (STARSS23) [20] dataset, and our
own audio recordings. Experimental results demonstrate the
transferability of PSELDNets, showing that the models con-
sistently exceed SOTA benchmarks [4], [10], [47]–[49] across
all these publicly available datasets.
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Inspired by PEFT techniques [33], [36], [38], we introduce a
data-efficient fine-tuning method for SELD, AdapterBit, which
fine-tunes only the additionally inserted multi-layer perceptron
(MLP) Adapter and bias terms, enabling the efficient utiliza-
tion of low-resource data, including minimal multi-channel or
even monophonic clips. By employing AdapterBit for transfer
learning in specific SELD scenarios using low-resource data,
PSELDNets exhibit superior performance, compared to the
conventional full fine-tuning methods. Notably, when utilizing
monophonic clips, pseudo-multi-channel clips are generated
by convolving the audio sources with the theoretical responses
of the microphone array to ensure compatibility with the input
to PSELDNets.

The contribution of this work includes:
1) Synthesizing a large-scale SELD dataset designed to

include numerous sound event instances and various
acoustic environments.

2) Introducing PSELDNets trained on the large-scale syn-
thetic SELD dataset to develop foundation models.

3) Transferring PSELDNets to several SELD scenarios and
achieving SOTA performance.

4) Proposing a data-efficient fine-tuning technique to adapt
PSELDNets to specific scenarios using limited data.

5) Releasing the source code, the pre-trained parameters of
PSELDNets, and the large-scale synthetic SELD dataset1.

II. DATA SYNTHESIS

The synthesis of SELD clips is achieved through the con-
volution of clean sound event clips from FSD50K [45] with
simulated SRIRs. The important components for accurately
simulating spatial sound event recordings are the acquisition
of high-quality sound event clips and SRIRs.

A. Sound event clips

Various efforts have been dedicated to developing audio
datasets for SEC [27], [45], [50]–[55]. In this study, we select
sound event clips based on the AudioSet Ontology [27] and
emphasize strong labeling, single-source clips and high label
quality.

1) AudioSet Ontology: We focus on creating SELD foun-
dation models. To meet this objective, the selected classes
need to cover a comprehensive range of everyday sounds
and be scalable regarding data and vocabulary. Accordingly,
we use the AudioSet Ontology2 for organizing our data. The
AudioSet Ontology includes 632 sound event classes, arranged
hierarchically with up to 6 levels, and encompasses a variety
of everyday sounds. The class annotations in the datasets, e.g.,
AudioSet [27], FSDnoisy18K [50], FSDKaggle2019 [51], and
FSD50K [45], make use of the vocabularies provided by this
ontology.

2) Strong data labeling: The SELD task, akin to the SED
task, necessitates predicting the exact start and end times
of sound events, which is essential for accurately predicting
the trajectory of moving sound sources. Nonetheless, audio

1https://github.com/Jinbo-Hu/PSELDNets
2https://research.google.com/audioset/ontology/index.html

datasets that provide such detailed timestamp annotations [54],
[56], i.e., strong labels, are quite rare. Most datasets provide
annotations at the clip level without precise timestamps, i.e.,
weak labels [27], [45], [50]–[53], [55].

3) Single-source clips: Individual sound sources are spa-
tially isolated to be distinguished in SELD. Conversely, typical
audio datasets usually include audio clips annotated with mul-
tiple class labels, indicating that each clip may contain several
overlapping sound events or a single event with hierarchical-
propagation labels [27], [45]. When synthesizing SELD clips,
each selected sound event clip must contain only a single
sound source at a time to guarantee an accurate representation
of spatialized sound events.

4) Label quality: The quality of datasets is important for
model performance. Early studies on audio datasets often
relied on small and exhaustively annotated datasets [52], [54],
[55], and as large-scale datasets like AudioSet [27] have
emerged, label inaccuracies have become more common [45],
due to the impracticality of exhaustive manual annotation.
Some datasets [50], [51] focus on learning under noisy label
conditions, which is out of the scope of this work. Label
accuracy remains critical for ensuring model reliability, as
noisy labels can introduce interference and lead to perfor-
mance degradation [57]. This work prioritizes label quality
while maintaining a substantial dataset size.

Based on the above considerations, we select single-source
clips from FSD50K [45] for synthesis. FSD50K encompasses
a collection of 51,197 audio clips totaling 108 hours, manually
labeled with 200 classes derived from the AudioSet Ontology.
Despite its weak labeling, FSD50K exhibits a high label den-
sity [58]. Label density refers to the portion of the recording
duration during which the annotated sound event is actually
present. The clips with high label density allow us to treat
sound events throughout the entire clip as active. Notably,
strong annotations in AudioSet [56] are not used for data
synthesis, due to significant imbalance and incompleteness in
certain classes.

B. Spatial room impulse responses

SELD generally necessitates multi-channel audio inputs for
effective source localization. First-order ambisonics (FOA),
well known as an array-agnostic format, is widely employed
in various SELD datasets [12]–[17], [19], [20], [59]. Nu-
merous advanced methods utilize FOA signals, instead of
original microphone-array-format signals, to achieve SOTA
results [10], [11], [48], [60]. Additionally, several studies [61],
[62] explore ambisonics encoding of arbitrary microphone ar-
rays, yielding competitive performance. Therefore, we employ
FOA-format SRIRs to synthesize SELD clips.

Ambisonics represents a data format that decomposes a
sound field on an orthogonal basis of spherical harmonic
functions. This format is typically derived by converting the
spherical microphone array signals [63]. The FOA signal
comprises four channels (W,Y,Z,X) with W denoting an
omnidirectional microphone and (Y,Z,X) referring to three
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Fig. 1: The architecture of EINV2. The solid line boxes repre-
sent trainable neural networks. The dotted lines are learnable
parameters connecting two branches.
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Fig. 2: The mACCDOA representation of the SELD model.
There is no track dimension in the ACCDOA representation.

bidirectional microphones aligned along the Cartesian axes.
The theoretical spatial responses of FOA are [12], [63], [64]:

H1(ϕ, θ) = 1,

H2(ϕ, θ) = sin(ϕ) cos(θ),

H3(ϕ, θ) = sin(θ),

H4(ϕ, θ) = cos(ϕ) cos(θ),

(1)

where θ and ϕ denote elevation and azimuth.
The computational generation method for FOA-format

SRIRs involves a two-step process: microphone-array RIRs
simulation and ambisonics format conversion. Microphone-
array RIRs are generated using the image source method
[65]. The procedure for converting microphone-array signals
to FOA signals can be found in [18], [63], [64], [66], [67].

III. THE SELD SYSTEMS

A. Related SELD methods

We introduce two existing learning-based SELD method-
ologies: Event-Independent Network V2 (EINV2) [2]–[4] and
Activity-coupled Cartesian DOA (ACCDOA) [5], [6]. Both
approaches perform frame-wise prediction of the temporal
activity and spatial trajectory of sound events. For simplicity,
subsequent illustrations omit the temporal dimension and
instead focus on the SELD output format for individual frames.

1) EINV2: EINV2 [3] comprises two branches: SED and
DOA estimation, which are linked through a soft parameter-
sharing strategy, e.g., multiple sets of learnable parameters.
Each branch has multiple event-independent tracks, forming
track pairs. Each pair can only predict a sound event with its
corresponding DOA. Permutation-invariant training is used to
handle the track misalignment between the ground truth and
the prediction. The architecture is shown in Fig 1. For the i-
th track, yiSED indicates one-hot encoding of M sound event
classes in the set S, and yiDOA represents Cartesian DOA output.
The number of tracks depends on the maximum number of
overlapping events.

2) ACCDOA: The ACCDOA approach represents the pres-
ence of a sound event through the amplitude of its correspond-
ing Cartesian DOA vector. Unlike EINV2, the ACCDOA rep-
resentation merges two branches into one, thereby obviating
the necessity of balancing the loss between SED and DOA
branches and avoiding an increase in model parameters.

However, the ACCDOA representation cannot detect mul-
tiple instances of the same event type from various locations.
To address this issue, the mACCDOA representation has
been proposed [6]. mACCDOA integrates both class-wise and
track-wise output formats, as shown in Fig. 2. Additionally,
auxiliary duplicating permutation invariant training (ADPIT)
is introduced to tackle problems of track misalignment and
sparse target outputs.

B. Network architectures

The SEC field has seen substantial advancements due to
deep neural networks [23]–[26] and large-scale datasets [27],
[45]. Utilizing pre-trained models that exhibit superior per-
formance in SEC, e.g., PANNs [23], AST [24], PaSST [25]
and HTS-AT [26], may improve the SELD task. Consequently,
the structures of PSELDNets align with these pre-trained SEC
models for effective transfer learning. PSELDNets take as
input the concatenation of log-mel spectrograms and intensity
vectors extracted from FOA signals, and predict active sound
events with corresponding DOA vectors for each timestamp,
adhering to SELD output formats described in Sec. III-A.

1) PANNs: PANNs [23] are convolution-based models
trained from scratch on AudioSet. Current SELD tech-
niques predominantly utilize CNN-attention hybrid models,
which have demonstrated superior performance, e.g. ResNet-
Conformer [10], [11] and our previously proposed CNN-
Conformer [4], [9].

Following the above model architectures, we extend CNN-
Conformer to CNN14-Conformer, where a Conformer block
[68] follows the main body of the CNN14 [23] module.
CNN14 contains a stack of 6 VGG-like [69] CNN blocks,
and the Conformer comprises two feed-forward layers with
residual connections sandwiching the multi-head self-attention
and convolution modules. The CNN block extracts local fine-
grained features, while the Conformer block captures both
local and global context dependencies in an audio sequence.

2) PaSST: PaSST [25] is an advanced and efficient variant
of AST [24]. The overall architecture of PaSST is shown in
Fig. 3, and the specific structure of the attention-based blocks
is detailed in Fig. 4(a). The 2D audio spectrogram is split into
a sequence of overlapping patches, which are subsequently
flattened and linearly projected to a sequence of 1D patch
embeddings. These embeddings are processed using a standard
Transformer Encoder [28]. Additionally, in analogy to the
mask technique used in BERT [32] and SpecAugment [31],
PaSST adopts unstructured Patchout and structured Patchout,
where unstructured Patchout randomly omits patches from any
position, and structured Patchout picks some frequency bins
or time frames and remove the corresponding row or column
of extracted patches. These two approaches improve general-
ization and reduce computation and memory complexity.
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Fig. 3: The architecture of the purely attention-based network.

We employ PaSST with the structured Patchout approach
[25] in the frequency axis to ensure the valid output of each
time frame. PaSST utilizes the classification and distillation
token mechanism for label prediction, inherently preventing
it from predicting event start and end times in audio clips.
The output embeddings from the Transformer layer contain
temporal information for each frame. To tackle the prediction
of sound events with precise timestamps, we project the final
layer embeddings into SELD output formats via a linear head.

3) HTS-AT: HTS-AT [26] combines the Swin Transformer
[30] and a token-semantic module [70]. The Swin Transformer
focuses on self-attention within each local window, which
comprises fixed-size and non-overlapping patches. A key de-
sign element of the Swin Transformer is the shifted window
attention across successive self-attention layers, introducing
connections between neighboring non-overlapping windows
from the preceding layer. Moreover, Swin Transformer builds
hierarchical feature maps by gradually merging neighboring
patches in deeper Transformer layers to reduce the sequence
size. The token-semantic module [70] employs a simple convo-
lution layer as the head layer and converts output feature maps
from the final Swin Transformer Block into activation maps for
the prediction of each timestamp. The details of HTS-AT are
depicted in Fig. 3 and Fig. 4(b), with the detailed architecture
of the Swin Transformer Block being identical to the standard
Transformer Encoder in Fig. 4(a).

C. Data augmentation

Data augmentation is a valuable technique for improving the
generalization capabilities of a system. Given the successful
application of our previously proposed data augmentation
chains [4], [9] in L3DAS22 Task 2 [16] and DCASE 2022 Task
3 [19], we adopt this technique to increase the data diversity.

Each data augmentation chain comprises various augmen-
tation operations, which are randomly selected and linked
together. Following the methodology described in [4], [9], we
randomly sample k = 3 augmentation chains and select Mixup
[71], Cutout [72], SpecAugment [31], and frequency shifting
[8] as data augmentation operations. Additionally, we employ
the rotation of FOA signals [10], [73] as an independent

(b) Swin Transformer(a) Transformer Encoder
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Fig. 4: The detailed architecture of the attention-based blocks
in Fig. 3. The Transformer Encoder is employed in AST and
PaSST, while the Swin Transformer is employed in HTS-AT.

spatial augmentation operation, which is not a part of data
augmentation chains.

IV. DATA-EFFICIENT FINE-TUNING

Fine-tuning involves deploying a pre-trained model for a
new task, where all parameters are initialized from the pre-
trained model, with the possible exception of the head layer.
The conventional full fine-tuning approach may result in the
loss of model generalization, potentially due to catastrophic
interference among tasks [33]. Inspired by PEFT techniques
[33], [36]–[38], we introduce a data-efficient fine-tuning strat-
egy, AdapterBit.

SELD generally necessitates multi-channel audio inputs for
source localization. By utilizing AdapterBit, PSELDNets can
be more efficiently adapted to various SELD scenarios using
limited data, with a particular emphasis on the monophonic
sound event clips. Specifically, when employing monophonic
signals for fine-tuning, we generate pseudo-FOA signals based
on theoretical responses of the employed microphone array to
align with the input to PSELDNets.

A. AdapterBit

We design the AdapterBit structure as depicted in Fig. 5.
AdapterBit integrates MLP Adapters following the architecture
outlined in [33], [38], [41], while additionally introducing bias-
term tuning. In bias-term tuning, only the bias terms from the
pre-trained model, such as those in linear and convolution
layers, are fine-tuned. The Adapter is constructed with a
Gaussian Error Linear Unit (GELU) non-linearity positioned
between two linear layers, which is subsequently integrated
into the standard Transformer Encoder layer through a scaling
factor s. The scaling factor serves to balance the general
features produced by the frozen branch and the scenario-
specific features produced by the trainable branch. For a given
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Fig. 5: The brief illustration of AdapterBit.

input feature xl, the Adapter produces adapted features x̃l as
follows:

x̃l = s · (W2 · GELU(W1 · xl + b1) + b2), (2)

where W1, W2, b1 and b2 denote the weights and biases of
the linear layers. The parameters W1 and b1 are randomly
initialized, while W2 and b2 are set to zero. The rationale
behind zero initialization is to ensure that the adapted model
keeps the same state as the pre-trained model at the beginning
of fine-tuning by utilizing the parallel design and the residual
connection of the Adapter.

During the fine-tuning stage, we focus on optimizing just
the newly added parameters and the bias term from PSELD-
Nets, while keeping the other parameters frozen. Specifically,
PSELDNets initializes its weights from the pre-trained check-
point and maintains all parameters, except the bias terms, in
a frozen state. The Adapters and the bias term of the adapted
model are updated using the SELD data from the specific
scenario, such as different microphone array types, acoustic
environments and sound event categories. During the inference
phase, we reload all pre-trained parameters, including those
that were previously kept frozen, along with the newly inserted
and fine-tuned parameters.

B. Pseudo-FOA signals

SELD generally necessitates multi-channel audio input to
enable effective DOA estimation, e.g., four-channel FOA sig-
nals input to PSELDNets. To fulfil this input requirement, we
can generate pseudo-FOA signals from monophonic signals
by utilizing the theoretical responses of FOA described in
Eq. (1). Additionally, the monophonic signals must contain
non-overlapping sound events to satisfy the single-source clip
requirement described in Sec. II-A3.

The pseudo-FOA signals are obtained as follows:
W (t, f)
Y (t, f)
Z(t, f)
X(t, f)

 =


1

sin(ϕ) cos(θ)
sin(θ)

cos(ϕ) cos(θ)

S(t, f), (3)

where S(t, f) denotes the monophonic signal spectrogram. ϕ
and θ can be randomly sampled from the desired distribution
of the azimuth and elevation.

The pseudo-FOA signals can be considered a form of
regularization for input monophonic signals, as they preserve
information related to sound events while mitigating the loss
of inter-channel connections wherever possible.

V. EXPERIMENTAL SETUPS

A. Datasets

Audio clips from FSD50K [45] are selected according to the
criteria in Sec. II-A. We select single-source sound event clips
and filter out the classes with less than 30 clips and those that
pose recognition challenges. As a result, a total of 170 classes
are selected. The selected audio clips comprise 31,444 samples
for training, amounting to 43.4 hours, and an additional 3,701
samples for testing, totaling 5.3 hours.

SRIRs are mainly generated via simulation [74]. We sim-
ulate diverse shoebox-shaped rooms employing frequency-
dependent absorption coefficients. This approach avoids the
requirement for sampling from a distribution of reverberation
times and estimating absorption coefficient values, thereby pre-
venting unrealistic scenarios such as long reverberation times
in small rooms. Absorption materials from typical acoustic
material databases3,4 are randomly allocated to the wall, ceil-
ing and floor surfaces of each simulated room. We use these
simulated SRIRs to synthesize spatialized static sound sources
for training. To generate overlapping data, we convolve each
monophonic single-source clip with SRIRs from different
spatial locations within the same room configuration and then
mix the resulting signals. Furthermore, additional spatialized
sound events, including moving sources, are synthesized using
collected SRIRs from TAU-SRIR DB [46] to evaluate the
simulated SRIRs and various network architectures. We adopt
the publicly available code for data synthesis5.

In total, we synthesize 67,000 1-minute clips amounting
to approximately 1,117 hours for training, where each clip
is simulated using a unique room configuration, termed as
synthetic-training-set. Additionally, we synthesize 3,060 1-
minute clips amounting to roughly 51 hours for testing,
denoted as synthetic-test-set. The distribution of maximum
polyphony of 1, 2, and 3 in the synthetic dataset follows a
ratio of approximately 10:5:2.

B. Hyper-parameters

The sampling rate is 24 kHz. We extract 64-dimension
log mel spectrograms from FOA signals using a Hanning
window of 1024 points and a hop size of 240. Each audio
clip is segmented to a fixed duration of ten seconds for
training and inference. All hyper-parameters of PSELDNets
are consistent with those in the pre-trained SEC models [23],
[25], [26]. The number of event-independent tracks is 3 in
EINV2 and mACCDOA. A batch size of 32 and the AdamW

3https://www.acoustic-supplies.com/absorption-coefficient-chart/
4https://pyroomacoustics.readthedocs.io/en/pypi-release/pyroomacoustics.

materials.database.html
5https://github.com/Jinbo-Hu/SELD-Data-Generator
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TABLE I: Description of the utilized SELD models involving various stages.

Method Initial parameters Datasets
Pre-train Pre-trained SEC checkpoints synthetic-training-set (1,117 h)

From-scratch Pre-trained SEC checkpoints One dataset from {L3DAS22 Task 2 (7.5 h), DCASE 2021 Task 3 (13.3 h), STARSS23 (7.5 h),
scenario-specific synthetic datasets (1 to 45 h)} for different experimentsFine-tune Pre-trained SELD checkpointsAdapterBit

[75] optimizer are employed for training. The learning rate is
set to 10−4 for the first 20 epochs and subsequently decreased
to 10−5 for the following 5 epochs.

C. Evaluation metrics
We use a joint metric of localization and detection [76],

[77] in this work: two location-dependent detection metrics, F-
score (F20◦ ) and error rate (ER20◦ ), and two class-dependent
localization metrics, localization recall (LRCD) and localiza-
tion error (LECD). In contrast to the standard computation
of F-score and error rate in SED [78], F20◦ and ER20◦

consider a prediction a true positive only if the sound event
is accurately detected and its estimated direction lies within a
spatial threshold of 20◦ away from the ground truth, while the
predictions falling outside this threshold are treated as false
positives. LECD and LRCD compute the mean angular error
and true positive rate in the case when sound event classes are
predicted correctly. Note that LRCD can also be interpreted as
the unthresholded recall.

We use an aggregated SELD metric for the method com-
parison and hyper-parameter selection:

ESELD = 1
4

[
ER20◦ + (1− F20◦) +

LECD

180◦ + (1− LRCD)
]
. (4)

For comparison and consistency across different task setups,
a macro-average of F20◦ , LRCD, LECD, and ESELD across
classes is utilized in STARSS23 and synthetic-test-set, and a
micro-average of those metrics across instances is employed
in other datasets. An effective system should demonstrate a
low ER20◦ , a high F20◦ , a low LECD, a high LRCD, and a
low ESELD.

VI. EXPERIMENTS

Firstly, the performance of PSELDNets is evaluated on
synthetic-test-set, investigating various networks and SELD
output formats. Secondly, PSELDNets are transferred to mul-
tiple publicly available datasets. Subsequently, the efficiency
of the data-efficient fine-tuning approach is validated on low-
resource data. Finally, the effectiveness of PSELDNets and the
data-efficient fine-tuning approach are tested using our own
audio recordings, termed Indoor Recordings.

The SELD models involving various stages are presented
in Table I. If not specified, the Pre-train method in this work
denotes the SELD models trained on synthetic-training-set,
initialized with pre-trained SEC checkpoints, such as those
from PANNs, PaSST or HTS-AT. The From-scratch, Fine-
tune, and AdapterBit methods represent different strategies for
applying these SELD models to specific SELD scenarios. The
From-scratch method utilizes pre-trained SEC checkpoints,
specifically HTS-AT in this work, without using any pre-
trained SELD checkpoints. In contrast, Fine-tune and Adapter-
Bit methods directly utilize the pre-trained SELD checkpoints,

TABLE II: Results of various networks with the mACCDOA
representations.

Network # Params ER20◦ ↓ F20◦ ↑ LECD ↓ LRCD ↑ ESELD ↓

CNN14-Conformer 179.4 M 0.805 25.4% 17.3◦ 32.1% 0.582
PaSST 52.3 M 0.773 29.2% 17.6◦ 33.2% 0.562

HTS-AT 34.6 M 0.784 27.6% 17.6◦ 33.9% 0.567

TABLE III: Reults of HTS-AT with various SELD methods.

Method ER20◦ ↓ F20◦ ↑ LECD ↓ LRCD ↑ ESELD ↓

ACCDOA 0.777 27.9% 17.1◦ 33.0% 0.566
mACCDOA 0.784 27.6% 17.6◦ 33.9% 0.567

EINV2 0.801 24.7% 15.4◦ 25.3% 0.597

specifically those integrating HTS-AT with the mACCDOA
output format in this work.

A. Results on the synthetic dataset

1) Network architecture: We evaluate the performance of
CNN14-Conformer, PaSST and HTS-AT, and choose the
mACCDOA [6] representations as the main SELD output
formats. Each network employs its respective pre-trained SEC
checkpoints [23], [25], [26], excluding the additional Con-
former [68] module, which is randomly initialized due to the
absence of an appropriate pre-trained checkpoint.

Table II presents the comparison of various networks. We
observe that PSELDNets achieve LRCD of over 32% and
LECD of approximately 17◦ on a macro-average across all
classes. Notably, when comparing the result on synthetic-test-
set with those on scenario-specific datasets presented in Tables
IV, V and VI, the performance gap in localization can be
attributed to the discrepancy of SRIRs and source motion
characteristics between synthetic-training-set and synthetic-
test-set, as illustrated in Sec. V-A, whereas the performance
gap in detection is primarily due to the diversity of sound
events, spanning a total of 170 classes, as well as label noise,
including imprecise timestamps and incorrect sound event
annotations in FSD50K.

Although CNN14-Conformer has a substantial number of
parameters, it performs the worst among the three networks,
possibly due to the challenges in optimizing such a large
model. Compared to PaSST, HTS-AT achieves similar per-
formance but with fewer parameters. Consequently, we select
HTS-AT as the baseline model for further investigation.

2) SELD methods: We evaluate the performance of three
SELD methods employing HTS-AT: ACCDOA representations
[5], mACCDOA representations [6], and EINV2 [3]. Within
the EINV2 method, we utilize two relatively independent SED
and DOA branches, both with identical architectures and pre-
trained checkpoints. These branches are connected through
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TABLE IV: Results on L3DAS22 Task 2.

Method Aug. ER20◦ ↓ F20◦ ↑ LECD ↓ LRCD ↑ ESELD ↓

(#1) Hu et al. [4] " 0.437 65.1% 11.9◦ 73.2% 0.280

From-scratch % 0.617 49.6% 17.9◦ 67.6% 0.386
" 0.445 63.8% 13.4◦ 72.4% 0.289

Fine-tune % 0.370 70.6% 11.6◦ 79.0% 0.235
" 0.361 70.3% 12.2◦ 77.0% 0.239

Fine-tune ∗ " 0.330 73.6% 11.3◦ 80.4% 0.213

∗ denotes post-processing methods.

several sets of trainable parameters [3] following each group
of Swin Transformers [30] as illustrated in Fig. 4(b).

The results of various SELD methods are presented in Table
III. Among the three methods, the EINV2 method exhibits
the worst performance, especially in detection. The EINV2
method has considerably worse LRCD but significantly better
LECD compared to the ACCDOA-based methods. One po-
tential explanation for this discrepancy is that EINV2 utilizes
multiple tracks, with each track predicting only one of 170
event classes, resulting in sparse outputs in the SED branch.
In contrast, the mACCDOA representation is trained using
auxiliary duplicated permutation invariant training (ADPIT),
enabling each track to learn with the same target as the ACC-
DOA format. This training mechanism leads to dense outputs
for mACCDOA, thereby achieving performance similar to that
of ACCDOA.

B. Transfer to various scenarios

In this section, we investigate one application of PSELD-
Nets. We employ HTS-AT with mACCDOA for transfer learn-
ing and apply it to several SELD scenarios using the full fine-
tuning method. Notably, some systems only report their results
using either ensemble or single models with post-processing.
For a fair comparison, we adopt a post-processing method
containing moving average (MA) and dynamic threshold (DT).
During inference, test samples are segmented into 10-second
clips with a 0.5-second hop length. The results for each
0.5-second segment are averaged across all corresponding
time-overlapped segments, referred to as the MA method.
Unlike the common approach that uses a uniform threshold
for predicting sound event classes, DT employs class-specific
thresholds.

For each scenario, we evaluate the following strategies: 1)
Fine-tuning a model initialized from the SEC checkpoints pre-
trained on AudioSet, denoted as the From-scratch method; 2)
Fine-tuning a model initialized from the SELD checkpoints
pre-trained on synthetic-training-set, referred to as the Fine-
tune method. The difference between the From-scratch and
Fine-tune methods is illustrated in Table I. Notably, the per-
formance difference between these two methods highlights the
improvements achieved through the pre-trained SELD models,
as shown in the following results.

1) L3DAS22 Task 2: L3DAS22 Task 2 [16] focuses on
investigating 3D sound event localization and detection using
two groups of FOA microphones in a large office room. The

TABLE V: Results on DCASE 2021 Task 3.

Method Aug. ER20◦ ↓ F20◦ ↑ LECD ↓ LRCD ↑ ESELD ↓

(#1) Shimada et al. [47], [48] ∗⋆ " 0.320 79.1% 8.5◦ 82.8% 0.187

(#2) Nguyen et al. [47], [79] ∗⋆ " 0.320 78.3% 10.0◦ 78.3% 0.202

From-scratch % 0.484 60.5% 15.8◦ 71.1% 0.314
" 0.435 61.7% 17.1◦ 80.3% 0.278

Fine-tune % 0.394 69.3% 12.9◦ 76.7% 0.251
" 0.329 74.7% 11.6◦ 79.6% 0.213

Fine-tune ∗ " 0.285 79.0% 10.0◦ 82.0% 0.183

∗ denotes post-processing methods. ⋆ denotes ensemble models.

dataset, synthesized using measured SRIRs, contains 900 30-
second audio recordings with 14 classes of sound events. Table
IV shows the performance comparison between PSELDNets
and our previously proposed system [4], CNN-Conformer, on
the evaluation set. The latter system obtained the top rank
in L3DAS22 Task 2. We modify the output format of CNN-
Conformer to predict the corresponding DOAs rather than 3D
Cartesian coordinates of corresponding sound events. For a
fair comparison, we utilize only the centre FOA microphones
and disregard the secondary FOA microphones. Experimental
results indicate the From-scratch method performs comparably
to CNN-Conformer [4], while the Fine-tune method surpasses
CNN-Conformer by a large margin. Nonetheless, the Fine-
tune method exhibits no performance improvement with data
augmentation, possibly due to the high degree of similarity
between the simulated environments in synthetic-training-set
and recording environments in the target dataset. Additionally,
the post-processing method further improves performance.
The Fine-tune method with post-processing achieves superior
performance across all metrics.

2) DCASE 2021 Task 3: The dataset in DCASE 2021
Task 3 [14], synthesized using measured SRIRs, comprises
800 1-minute audio recordings. Different from the dataset in
L3DAS22 Task 2, the DCASE 2021 Task 3 dataset encom-
passes moving sources and directional interference outside of
the target classes. Table V presents the performance difference
between PSELDNets and the top two systems [47], [48],
[79] on the evaluation set. Notably, these top two systems
report exclusively the results of the ensemble models with
post-processing. Experimental results reveal that both fine-
tuned PSELDNets and the data augmentation method signif-
icantly improve performance. Moreover, when comparing the
aggregated SELD metric ESELD, our single model fine-tuned
PSELDNets with post-processing perform even better than the
SOTA system proposed by Shimada et al. [48], which was
achieved by ensemble models with post-processing.

3) STARSS23: The STARSS23 [20] dataset, an extended
version of the STARSS22 [19] dataset, was collected in real-
world environments, annotated manually, and served as the
dataset for DCASE 2023 Task 3 and DCASE 2024 Task 3.
Various clips in STARSS23 were recorded with combinations
of moving and static participants acting in simple scenes
and interacting among themselves and with the sound props.
STARSS23 comprises roughly 7.5 hours of recordings in
its development set. Due to the limited size of STARSS23,
DCASE provides an additional official synthetic dataset [81]
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Fig. 6: The effect of the post-processing method on PSELDNets.
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Fig. 7: Visualization of the ground truth and the system output w/ or w/o post-processing for a clip from the DCASE 2021
Task 3 evaluation set. SED predictions with the corresponding azimuth estimations are presented.

TABLE VI: Results on the STARSS23 dataset.

Method Ext. Data Aug. ER20◦ ↓ F20◦ ↑ LECD ↓ LRCD ↑ ESELD ↓

(#1) Wang et al. [11], [49] ∗ Wang-set " 0.400 64.0% 13.4◦ 74.0% 0.274

(#2) Xue et al. [49], [80] ∗ Xue-set " 0.430 54.8% 14.7◦ 68.0% 0.321

From-scratch - % 0.749 24.1% 30.8◦ 51.0% 0.542
- " 0.530 42.9% 18.2◦ 58.6% 0.404

Fine-tune

- % 0.640 41.4% 20.7◦ 62.7% 0.429
- " 0.523 54.4% 15.4◦ 65.6% 0.352

Base-set " 0.429 56.5% 14.5◦ 69.8% 0.312
+ Synth-set " 0.411 58.2% 14.7◦ 73.2% 0.295

Fine-tune ∗ Base-set
+ Synth-set " 0.390 62.4% 14.4◦ 77.7% 0.267

∗ denotes post-processing methods.

for baseline training of Task 3 of DCASE 2022-2023. The
official synthetic dataset, denoted as Base-set, is simulated by
convolving sound event clips with measured SRIRs from TAU-
SRIR DB. Since the labels of the STARSS23 evaluation set are
not publicly available, Table VI shows results of the top two
systems [11], [49], [80] and PSELDNets on the STARSS23
validation set. These top two systems report the results for
the single models with post-processing and also synthesize
substantial scenario-specific datasets for training, referred to
as Wang-set and Xue-set. For a fair comparison, we also
synthesize scenario-specific datasets, termed as Synth-set. The
SOTA system proposed by Wang et al. [11], incorporated
a class-dependent sound separation approach [82] into the
SELD system. The Fine-tune method with post-processing
outperforms the system of Wang et al. [11] in terms of ESELD,
more specifically, in terms of LRCD and ER20◦ .

4) Discussions: We investigate the performance of PSELD-
Nets applied to these scenario-specific downstream datasets to
evaluate the effects of data augmentation and post-processing.
Additionally, we discuss the limitations of PSELDNets.

Impact of data augmentation. Empirical evidence indi-
cates that learning-based SELD methods highly rely on large
amounts of data, and data augmentation can increase the
diversity of samples [4], [10]. Despite utilizing pre-trained
checkpoints of PSELDNets, data augmentation continues to
improve performance significantly, as shown in Tables V and
VI. When applied to downstream datasets, PSELDNets offer
general prior knowledge, while data augmentation provides a
technique to effectively exploit scenario-specific data.

Impact of post-processing. We surprisingly observe that
the post-processing method can also provide significant per-
formance improvement. Fig. 6 presents the effect of the
post-processing method in the above three datasets. We see
that MA improves performance notably in ER20◦ , F20◦ and
LECD, while DT offers substantial performance improvement
in LRCD. Fig. 7 illustrates a visualization of the ground truth
and the system output for a clip from the evaluation set of
DCASE 2021 Task 3. We present SED predictions along with
the corresponding azimuth estimations. Overall, MA smooths
the predicted trajectories of sound events, bringing them closer
to the ground truth, compared to the model output without
post-processing, such as the moving trajectories of crying
baby. On the other hand, DT reduces the false negatives, such
as the knocking on door event observed between 10 to 15 s.

Limitation of PSELDNets. We observe the Fine-tune
method exhibits an increase of more than 1◦ in LECD com-
pared to the SOTA system of Shimada et al. [48] on DCASE
2021 Task 3 and the SOTA system of Wang et al. [11] on
STARSS23, which can be attributed to the output temporal
resolution of HTS-AT. Specifically, the output temporal res-
olution is 0.1 seconds in those systems [4], [11], [48], but
approximately 0.3 seconds in HTS-AT due to the effect of
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TABLE VII: Results of data-efficient fine-tuning on L3DAS22 Task 2.

Dataset # Channels Method ER20◦ ↓ F20◦ ↑ LECD ↓ LRCD ↑ ESELD ↓

L3DAS22 - split ov1

4 From-scratch 0.697 30.1% 23.2◦ 43.1% 0.523
4 Fine-tune 0.409 64.3% 12.7◦ 65.6% 0.295
4 AdapterBit 0.392 64.7% 13.3◦ 67.6% 0.286

1 Fine-tune 0.617 32.7% 25.1◦ 60.4% 0.456
1 LoRA 0.605 37.0% 24.7◦ 60.5% 0.442
1 Adapter 0.620 34.4% 25.4◦ 62.0% 0.449
1 AdapterBit 0.591 37.9% 24.5◦ 62.0% 0.432

Synthetic dataset

4 Fine-tune 0.603 38.0% 23.6◦ 56.4% 0.448
4 AdapterBit 0.607 38.1% 23.5◦ 57.8% 0.445

1 Fine-tune 0.634 35.1% 23.1◦ 49.0% 0.480
1 AdapterBit 0.618 37.8% 22.1◦ 51.7% 0.461

split patches and the patch merging module. This discrepancy
has minimal impact on the localization of static sources, for in-
stance, in L3DAS22 Task 2, the Fine-tune method also shows
performance improvement in LECD, compared to our previous
system [4]. However, it introduces a systematic error when
localizing moving sources, such as those in DCASE 2021 Task
3 and STARSS23. On the other hand, PSELDNets provide
more substantial performance improvement in detection than
in localization. Moreover, the systems mentioned in this work
[4], [9]–[11], [48], [60], [79], [80] have shown more significant
improvement in detection than in localization.

C. Results of data-efficient fine-tuning

In this section, we explore another application of PSELD-
Nets: data-efficient fine-tuning. Specifically, we employ
PSELDNets with AdapterBit in both low-resource-data and
rich-source-data scenarios. Low-resource data refers to small
synthetic datasets using only simulated SRIRs and no data
augmentation technique, while rich-resource data includes
substantial samples that have been augmented and derived
from either real-world scenes or synthesis using collected
SRIRs. All results are evaluated on the evaluation sets of
DCASE 2021 Task 3 and L3DAS22 Task 2 and the validation
set of STARSS23.

Similar to Sec. VI-B, we also compare the From-scratch
method, the Fine-tune method, and additional the AdapterBit
method. The Fine-tune method fine-tunes all parameters of
PSELDNets, while the AdapterBit method only fine-tunes the
inserted Adapter module and the bias item of PSELDNets.

1) Effect of AdapterBit: Our ablation studies employ
split ov1 subset of the L3DAS22 Task 2 dataset for training.
This subset contains 250 30-second recordings without over-
lapping sound events. For training on monophonic clips, we
extract the first-channel signal from FOA signals and then gen-
erate pseudo-FOA signals using these extracted monophonic
signals. We evaluate the performance of four methods on
pseudo-FOA signals, including Fine-tune, AdapterBit, Adapter
(AdapterBit without bias-tuning), and LoRA [34], as shown in
the 1-channel part of the top block of Table VII. Experimental
results indicate the effectiveness of the designed Adapter,
which achieves an ESELD of 0.449, compared to 0.456 for
the Fine-tune method. Incorporating additional bias items into

TABLE VIII: Computational efficiency of various fine-tuning
methods.

Method # Tunable Params Inference FLOPs

Fine-tune 28.1 M 2.88 G
Adapter 4.9 M 3.34 G

AdapterBit 5.0 M 3.34 G
LoRA 5.0 M 2.88 G

Adapter tuning leads to further performance improvement. Ad-
ditionally, AdapterBit exhibits superior performance relative to
LoRA.

Moreover, we compare the performance of pseudo-FOA sig-
nals with the corresponding FOA signals, denoted as channels
of 4 in the top block of Table VII. The primary difference
between pseudo-FOA signals and FOA signals lies in inter-
channel correlations. Our observations reveal that leveraging
PSELDNets, all methods using only monophonic signals sig-
nificantly outperform the From-scratch method using corre-
sponding FOA signals, which only achieves ESELD of 0.523.
When comparing the Fine-tune and AdapterBit methods using
monophonic signals with the corresponding FOA signals, the
primary performance difference lies in localization, due to
similar performance in LRCD but a significant performance
difference in LECD, such as LECD of 12.7◦ and LRCD of
65.6% in the 4-ch Fine-tune method and LECD of 25.1◦ and
LRCD of 60.4% in the 1-ch Fine-tune method. Original FOA
signals of the target scenario contain more information about
the acoustic environment and microphone array than pseudo-
FOA signals.

Tables VII and VIII present a comparison of the perfor-
mance and computational efficiency of various fine-tuning
methods, respectively. AdapterBit exhibits superior perfor-
mance compared to LoRA and Adapter despite using the
same scale of tunable parameters. However, it requires more
inference FLOPs than Fine-tune and LoRA. Notably, LoRA
achieves inference FLOPs comparable to Fine-tune, as its
additional parameters can be merged into the original model
weights. Techniques such as knowledge distillation [83],
model quantization [84], and model pruning [85], [86] offer
the potential to further reduce the parameter scale and compu-
tational overhead, but their investigation is beyond the scope
of this study.
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TABLE IX: Results of data-efficient fine-tuning on DCASE
2021 Task 3.

# Channels Method ER20◦ ↓ F20◦ ↑ LECD ↓ LRCD ↑ ESELD ↓

4 Fine-tune 0.621 40.4% 23.0◦ 56.9% 0.444
4 AdapterBit 0.610 43.4% 22.5◦ 61.5% 0.422

1 Fine-tune 0.594 42.3% 22.5◦ 58.7% 0.427
1 AdapterBit 0.595 44.9% 21.5◦ 59.2% 0.418

TABLE X: Results of data-efficient fine-tuning on the
STARSS23 dataset.

# Channels Method ER20◦ ↓ F20◦ ↑ LECD ↓ LRCD ↑ ESELD ↓

4 Fine-tune 0.732 23.6% 22.4◦ 41.4% 0.552
4 AdapterBit 0.736 23.5% 24.7◦ 44.8% 0.548

1 Fine-tune 0.719 19.2% 26.5◦ 37.3% 0.575
1 AdapterBit 0.745 22.9% 25.9◦ 43.3% 0.557

2) Results on low-resource data: Given the absence of
polyphonic indications in each clip from STARSS23 and
DCASE 2021 Task 3, we create scenario-specific datasets
for training, as well as for L3DAS22 Task 2. Each dataset,
consisting of 120 one-minute FOA audio clips, is generated
using simulated SRIRs. The bottom block of Table VII, Table
IX, and Table X illustrate the results of data-efficient fine-
tuning. Tests with either multi-channel or monophonic signals
demonstrate the efficacy of AdapterBit relative to the Fine-
tune method. Remarkably, AdapterBit tuning on monophonic
signals reaches performance levels comparable to those from
synthesized FOA signals, thus potentially simplifying the
adaptation process to a target scene and diminishing the re-
quirement for synthesizing multi-channel clips. This suggests
that the performance difference between original FOA signals
and pseudo-FOA signals, as shown in the top block of Table
VII, may indicate the discrepancy between the simulated
environments and the acoustic conditions in the real world.
Additionally, Tables VII, IX and X show the capacity of
PSELDNets to generalize across diverse microphone array
setups through the FOA format without incorporating scenario-
specific information, despite differences in microphone ar-
ray setups between synthetic-training-set and scenario-specific
datasets.

3) Results on rich-resource data: Fig. 8 illustrates the per-
formance of PSELDNets using AdapterBit, trained on varying
proportions of the training set from downstream datasets,
including clips from different numbers of rooms or splits.
These datasets are either synthesized using measured SRIRs
from real-world environments or directly collected in real-
world environments. When employing STARSS23, a small-
size synthesized dataset comprising spatial sound events of all
corresponding classes is additionally utilized, because clips
from any individual rooms in STARSS23 only encompass
partial sound event classes. Experimental results indicate that
both the Fine-tune method and AdapterBit exhibit superior
performance compared to the From-scratch method, irrespec-
tive of the dataset size. Notably, AdapterBit also demonstrates
more efficient data utilization than the Fine-tune method when
trained on limited proportions of the training set, such as
the clips from the first two splits of L3DAS22 Task 2, the
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Fig. 8: The effect of AdapterBit on various proportions of the
training set from downstream datasets.

first two rooms of DCASE 2021 Task 3 and the first five
rooms of STARSS23. This aligns with the previous results
on low-resource data. However, when trained on more data,
AdapterBit’s performance falls behind the Fine-tune method.
This performance disparity can be attributed to the substantial
distributional differences between the simulated environments
and real-world acoustic environments, which AdapterBit may
not effectively learn due to its limited trainable parameters.

D. Results on Indoor Recordings

In this section, we evaluate the transferability of PSELD-
Nets and the impact of data-efficient fine-tuning on Indoor
Recordings. As shown in Fig. 9, we exploit a 4-channel
unbaffled spherical microphone array with a radius of 0.12 m,
arranged in a tetrahedral configuration, to record sound sources
emitted by loudspeakers in two distinct environments: an
anechoic chamber and a meeting room. In the meeting room,
we estimate a reverberation time of T60 = 900 ms and a signal-
noise-ratio (SNR) of 6 dB. The microphone array was centrally
positioned in a square, with loudspeakers placed at three
vertical heights and eight predetermined horizontal locations
corresponding to either the square’s vertices or midpoints of
the square’s sides. The sides of the square have lengths of 4
m and 2.4 m. Therefore, there are a total of 48 sound source
locations. We placed a loudspeaker among these locations and
recorded one-minute audio clips with a maximum polyphony
of 1 at each location, resulting in 48 non-overlapping audio
clips. Additionally, we recorded 12 one-minute audio clips
with a maximum polyphony of 2, where two loudspeakers
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TABLE XI: Results on Indoor Recordings.

Method # Channels Datasets Anechoic Chamber Meeting Room
ER20◦ ↓ F20◦ ↑ LECD ↓ LRCD ↑ ESELD ↓ ER20◦ ↓ F20◦ ↑ LECD ↓ LRCD ↑ ESELD ↓

From-scratch 4 Sim240 + Sim120 0.392 70.6% 12.9◦ 73.9% 0.255 0.448 63.0% 15.5◦ 71.2% 0.298
Fine-tune 4 Sim240 + Sim120 0.393 69.3% 12.1◦ 76.7% 0.250 0.430 64.4% 15.3◦ 76.4% 0.277
Fine-tune 4 Sim240 + Co120 0.358 72.8% 11.9◦ 79.9% 0.224 0.414 67.6% 14.0◦ 79.7% 0.255

Fine-tune 4 Sim120 ov1 0.526 57.9% 13.9◦ 65.2% 0.343 0.686 36.7% 24.7◦ 67.3% 0.446
AdapterBit 4 Sim120 ov1 0.480 60.7% 14.1◦ 63.2% 0.330 0.615 41.1% 23.5◦ 65.3% 0.420

Fine-tune 1 Sim120 ov1 0.626 43.5% 22.0◦ 53.3% 0.445 0.809 16.9% 39.7◦ 50.7% 0.588
AdapterBit 1 Sim120 ov1 0.570 48.4% 22.2◦ 64.3% 0.392 0.768 22.2% 35.1◦ 59.5% 0.537

Fig. 9: Recording environments used in real-world experi-
ments, comprising an anechoic chamber and a meeting room.

were randomly placed among these 48 locations for each clip.
We also measured the RIRs at 8 supplementary positions in
the meeting room to facilitate efficient fine-tuning. The sound
event clips from NIGENS [54] are divided into training and
test splits, with the training subset for data synthesis and the
test subset for playback through the loudspeakers. In total,
we collected 60 one-minute audio clips for each recording
environment as the evaluation set.

We synthesize four datasets for training: Sim240, Sim120,
Sim120 ov1 and Co120. The maximum polyphony of Sim240,
Sim120 and Co120 is 2, whereas the maximum polyphony
of Sim120 ov1 is 1. Sim240, Sim120 and Sim120 ov1 are
generated using simulated SRIRs and contain 240, 120, and
120 one-minute audio clips, respectively, while Co120 is
synthesized using previously collected 8 RIRs in the meeting
room and also contains 120 one-minute audio clips. The shape
of the microphone array in synthetic datasets is consistent with
the array used for recording in the real scene.

Same as Sec. VI-C, we compare the Fine-tune, From-
scratch, and AdapterBit methods. The top block of Table
XI presents the transferability of PSELDNets on Indoor
Recordings. We fine-tune PSELDNets on augmented synthetic
datasets and evaluate the performance on Indoor Recordings
collected from two environments. Notably, the distribution
differences in sound event clips and recording locations be-
tween these two environments are minimal, excluding acoustic
properties, such as noise level and reverberation. We observe
that the performance in LRCD between two environments are
similar, but the performance difference is mainly in localiza-
tion, which can be due to differences in acoustic environments.
Experimental results demonstrate the effectiveness of PSELD-

Nets. Additionally, replacing Sim120 with Co120 can improve
performance in both localization and detection, since collected
RIRs carry more information about the acoustic environment
and microphone characteristics. On the other hand, we note
that LECD in the ideal acoustic environment, anechoic cham-
ber, reaches approximately 12◦, perhaps due to the large radius
and unbaffled configuration of the spherical microphone array
[63], which leads to incorrect FOA conversion, especially in
the high-frequency range. Furthermore, while we transfer pre-
trained models to specific scenarios, the considerable variation
in distribution between the source domain and the target
domain [87], such as the microphone characteristics, puts the
prior knowledge at high risk of losing effectiveness [87]–[90].

The bottom block of Table XI illustrates the efficacy of
the data-efficient fine-tuning method on Indoor Recordings.
The results indicate that the model fine-tuned on FOA signals
performs better than on pseudo-FOA signals by a large margin,
which can be attributed to substantial differences in micro-
phone array configurations and acoustic environments between
synthetic-training-set and the synthetic and recorded datasets
used in this section. Additionally, when using multi-channel
or monophonic signals, AdapterBit tuning performs better than
the Fine-tune method. Notably, it suggests that AdapterBit is
particularly effective when only using monophonic signals. We
hypothesize that AdapterBit prevents catastrophic interference
[33], thereby decreasing the likelihood that the model forgets
previously learned knowledge when adapting to new scenarios.

VII. CONCLUSION

This paper has built sound event localization and detection
(SELD) foundation models by introducing pre-trained SELD
networks (PSELDNets) on a large-scale synthetic dataset. The
synthetic dataset encompasses 1,167 hours of audio recordings
with an ontology of 170 sound classes. To enhance the adapt-
ability of PSELDNets to specific scenarios with low-resource
data, we have presented AdapterBit, a data-efficient fine-tuning
technique. We evaluate PSELDNets on synthetic-test-set and
achieve satisfactory performance. We transfer PSELDNets to
several downstream datasets that are publicly available, as well
as to our own collected recordings, Indoor Recordings. The ex-
perimental results demonstrate superior performance compared
to previous state-of-the-art systems. Moreover, incorporating
AdapterBit into PSELDNets enhances the efficiency of the
transferability for low-resource data, including both limited
multi-channel and monophonic audio clips. Future work will
focus on model compression and computational efficiency to
enable real-time applications.
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[25] K. Koutini, J. Schlüter, H. Eghbal-zadeh, and G. Widmer, “Efficient
training of audio transformers with patchout,” in Proc. Interspeech, 2022,
pp. 2753–2757.

[26] K. Chen, X. Du, B. Zhu, Z. Ma, T. Berg-Kirkpatrick, and S. Dubnov,
“HTS-AT: A hierarchical token-semantic audio transformer for sound
classification and detection,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., 2022, pp. 646–650.

[27] J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen, W. Lawrence, R. C.
Moore, M. Plakal, and M. Ritter, “Audio Set: An ontology and human-
labeled dataset for audio events,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., 2017, pp. 776–780.

[28] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 30, 2017.

[29] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” in Proc. Int. Conf. Learn.
Representations, 2021.

[30] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo,
“Swin Transformer: Hierarchical vision transformer using shifted win-
dows,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021, pp. 10 012–
10 022.

[31] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk,
and Q. V. Le, “SpecAugment: A simple data augmentation method for
automatic speech recognition,” in Proc. Interspeech, 2019, pp. 2613 –
2617.

[32] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
NAACL-HLT, 2019, pp. 4171–4186.

[33] S. Chen, C. Ge, Z. Tong, J. Wang, Y. Song, J. Wang, and P. Luo, “Adapt-
Former: Adapting vision transformers for scalable visual recognition,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 35, 2022, pp. 16 664–16 678.

[34] E. J. Hu, yelong shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “LoRA: Low-rank adaptation of large language models,”
in Proc. Int. Conf. Learn. Representations, 2022.

[35] J. He, C. Zhou, X. Ma, T. Berg-Kirkpatrick, and G. Neubig, “Towards a
unified view of parameter-efficient transfer learning,” in Proc. Int. Conf.
Learn. Representations, 2022.

[36] E. Ben Zaken, Y. Goldberg, and S. Ravfogel, “BitFit: Simple parameter-
efficient fine-tuning for transformer-based masked language-models,” in
Proc. Annu. Meeting Assoc. Comput. Linguistics, vol. 2, 2022, pp. 1–9.

[37] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe,
A. Gesmundo, M. Attariyan, and S. Gelly, “Parameter-efficient transfer
learning for NLP,” in Proc. Int. Conf. Mach. Learn., vol. 97, 2019, pp.
2790–2799.

[38] T. Yang, Y. Zhu, Y. Xie, A. Zhang, C. Chen, and M. Li, “AIM: Adapting
image models for efficient video action recognition,” in Proc. Int. Conf.
Learn. Representations, 2023.

[39] D. Yin, Y. Yang, Z. Wang, H. Yu, K. Wei, and X. Sun, “1% VS 100%:
Parameter-efficient low rank adapter for dense predictions,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2023, pp. 20 116–
20 126.

This article has been accepted for publication in IEEE Transactions on Audio, Speech and Language Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TASLPRO.2025.3587446

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



14

[40] M. Jia, L. Tang, B.-C. Chen, C. Cardie, S. Belongie, B. Hariharan, and
S.-N. Lim, “Visual prompt tuning,” in Proc. Eur. Conf. Comput. Vis.,
2022, pp. 709–727.

[41] Y. Liang, H. Lin, S. Qiu, and Y. Zhang, “AAT: Adapting audio
transformer for various acoustics recognition tasks,” in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process., 2024, pp. 1361–1365.

[42] T. Rolland and A. Abad, “Exploring adapters with conformers for
children’s automatic speech recognition,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., 2024, pp. 12 747–12 751.

[43] M. Sang and J. H. Hansen, “Efficient adapter tuning of pre-trained
speech models for automatic speaker verification,” in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process., 2024, pp. 12 131–12 135.

[44] K. C. Sim, Z. Huo, T. Munkhdalai, N. Siddhartha, A. Stooke, Z. Meng,
B. Li, and T. Sainath, “A comparison of parameter-efficient ASR domain
adaptation methods for universal speech and language models,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process., 2024, pp. 6900–6904.

[45] E. Fonseca, X. Favory, J. Pons, F. Font, and X. Serra, “FSD50K: An
open dataset of human-labeled sound events,” IEEE/ACM Trans. Audio,
Speech, Lang. Process., vol. 30, pp. 829–852, 2022.

[46] A. Politis, S. Adavanne, and T. Virtanen, “TAU Spatial Room Impulse
Response Database (TAU-SRIR DB),” 2022. [Online]. Available:
https://doi.org/10.5281/zenodo.6408611

[47] A. Politis, A. Deleforge, S. Adavanne, P. Srivastava, D. Krause,
and T. Virtanen, “[DCASE2021 task 3] sound event localization and
detection with directional interference,” 2021. [Online]. Available:
https://dcase.community/challenge2021

[48] K. Shimada, N. Takahashi, Y. Koyama, S. Takahashi, E. Tsunoo,
M. Takahashi, and Y. Mitsufuji, “Ensemble of ACCDOA- and EINV2-
based systems with D3Nets and impulse response simulation for sound
event localization and detection,” DCASE2021 Challenge, Tech. Rep.,
2021.

[49] A. Politis, K. Shimada, Y. Mitsufuji, T. Virtanen, S. Adavanne,
P. Sudarsanam, D. Krause, N. Takahashi, S. Takahashi, Y. Koyama,
K. Uchida, and A. Hakala, “[DCASE2023 task 3] sound event
localization and detection evaluated in real spatial sound scenes,” 2023.
[Online]. Available: https://dcase.community/challenge2023

[50] E. Fonseca, M. Plakal, D. P. W. Ellis, F. Font, X. Favory, and X. Serra,
“Learning sound event classifiers from web audio with noisy labels,” in
Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2019, pp. 21–25.

[51] E. Fonseca, M. Plakal, F. Font, D. P. W. Ellis, and X. Serra, “Audio
tagging with noisy labels and minimal supervision,” in Proc. Detect.
Classification Acoust. Scenes Events Workshop, 2019, pp. 69–73.

[52] K. J. Piczak, “ESC: Dataset for environmental sound classification,” in
Proc. ACM Int. Conf. Multimedia, 2015, p. 1015–1018.

[53] M. Cartwright, A. Cramer, A. E. M. Mendez, Y. Wang, H.-H. Wu,
V. Lostanlen, M. Fuentes, G. Dove, C. Mydlarz, J. Salamon et al.,
“SONYC-UST-V2: An urban sound tagging dataset with spatiotemporal
context,” in Proc. Detect. Classification Acoust. Scenes Events Work-
shop, 2020, pp. 16–20.

[54] I. Trowitzsch, J. Taghia, Y. Kashef, and K. Obermayer, “NIGENS
general sound events database,” 2019. [Online]. Available: https:
//doi.org/10.5281/zenodo.2535878

[55] P. Foster, S. Sigtia, S. Krstulovic, J. Barker, and M. D. Plumbley,
“Chime-home: A dataset for sound source recognition in a domestic
environment,” in Proc. IEEE Workshop Appl. Signal Process. Audio
Acoust., 2015, pp. 1–5.

[56] S. Hershey, D. P. W. Ellis, E. Fonseca, A. Jansen, C. Liu, R. Chan-
ning Moore, and M. Plakal, “The benefit of temporally-strong labels
in audio event classification,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., 2021, pp. 366–370.

[57] B. Frenay and M. Verleysen, “Classification in the presence of label
noise: A survey,” IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 5,
pp. 845–869, 2014.

[58] A. Shah, A. Kumar, A. G. Hauptmann, and B. Raj, “A closer look at
weak label learning for audio events,” arXiv preprint arXiv:1804.09288,
2018.

[59] K. Nagatomo, M. Yasuda, K. Yatabe, S. Saito, and Y. Oikawa, “Wearable
SELD dataset: Dataset for sound event localization and detection using
wearable devices around head,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., 2022, pp. 156–160.

[60] Q. Wang, Y. Dong, H. Hong, R. Wei, M. Hu, S. Cheng, Y. Jiang,
M. Cai, X. Fang, and J. Du, “The NERC-SLIP system for sound event
localization and detection with source distance estimation of DCASE
2024 challenge,” DCASE2023 Challenge, Tech. Rep., 2023.

[61] L. McCormack, A. Politis, R. Gonzalez, T. Lokki, and V. Pulkki, “Para-
metric ambisonic encoding of arbitrary microphone arrays,” IEEE/ACM
Trans. Audio, Speech, Lang. Process., vol. 30, pp. 2062–2075, 2022.

[62] M. Heikkinen, A. Politis, and T. Virtanen, “Neural ambisonics encoding
for compact irregular microphone arrays,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., 2024, pp. 701–705.

[63] B. Rafaely, Fundamentals of Spherical Array Processing. Springer,
2015.

[64] A. Politis, “Microphone array processing for parametric spatial audio
techniques,” Ph.D. dissertation, Aalto University, 2016.

[65] J. B. Allen and D. A. Berkley, “Image method for efficiently simulating
small-room acoustics,” J. Acoust. Soc. Amer., vol. 65, no. 4, pp. 943–950,
1979.

[66] A. Politis and H. Gamper, “Comparing modeled and measurement-based
spherical harmonic encoding filters for spherical microphone arrays,” in
Proc. IEEE Workshop Appl. Signal Process. Audio Acoust., 2017, pp.
224–228.

[67] Y. Koyama, K. Shigemi, M. Takahashi, K. Shimada, N. Takahashi,
E. Tsunoo, S. Takahashi, and Y. Mitsufuji, “Spatial data augmentation
with simulated room impulse responses for sound event localization and
detection,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
2022, pp. 8872–8876.

[68] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu, and R. Pang, “Conformer: Convolution-
augmented transformer for speech recognition,” in Proc. Interspeech,
2020, pp. 5036 – 5040.

[69] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Representa-
tions, 2015.

[70] W. Gao, F. Wan, X. Pan, Z. Peng, Q. Tian, Z. Han, B. Zhou, and Q. Ye,
“TS-CAM: Token semantic coupled attention map for weakly supervised
object localization,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021,
pp. 2886–2895.

[71] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” in Proc. Int. Conf. Learn. Representations,
2018.

[72] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing
data augmentation,” in Proc. AAAI Conf. Artif. Intell., vol. 34, no. 07,
2020, pp. 13 001–13 008.

[73] L. Mazzon, Y. Koizumi, M. Yasuda, and N. Harada, “First order
ambisonics domain spatial augmentation for DNN-based direction of
arrival estimation,” in Proc. Detect. Classification Acoust. Scenes Events
Workshop, 2019, pp. 154–158.

[74] R. Scheibler, E. Bezzam, and I. Dokmanić, “Pyroomacoustics: A python
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